A disk-shaped domain integral method for the computation of stress intensity factors using tetrahedral meshes

نویسندگان

  • Morteza Nejati
  • Adriana Paluszny
  • Robert W. Zimmerman
چکیده

A novel domain integral approach is introduced for the accurate computation of pointwise Jintegral and stress intensity factors (SIFs) of 3D planar cracks using tetrahedral elements. This method is efficient and easy to implement, and does not require a structured mesh around the crack front. The method relies on the construction of virtual disk-shaped integral domains at points along the crack front, and the computation of domain integrals using a series of virtual triangular elements. The accuracy of the numerical results computed for through-the-thickness, penny-shaped, and elliptical crack configurations has been validated by using the available analytical formulations. The average error of computed SIFs remains below 1% for fine meshes, and 2 − 3% for coarse ones. The results of an extensive parametric study suggest that there exists an optimum mesh-dependent domain radius at which the computed SIFs are the most accurate. Furthermore, the results provide evidence that tetrahedral elements are efficient, reliable and robust instruments for accurate linear elastic fracture mechanics calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از روش غنی شده بدون شبکه گلرکین در تعیین پارامتر های شکست صفحات FGM

Stress-intensity factors (SIFs) are the most important parameters in fracture mechanics analysis of structures. These parameters are evaluated for a stationary crack in functionally graded plates of arbitrary geometry using a novel Galerkin based mesh-free method. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial coordinate...

متن کامل

Formulation and Implementation of a High-Order 3-D Domain Integral Method for the Extraction of Energy Release Rates

This paper presents a three dimensional (3-D) formulation and implementation of a high-order domain integral method for the computation of energy release rate. The method is derived using surface and domain formulations of the J-integral and the weighted residual method. The J-integral along 3-D crack fronts is approximated by high-order Legendre polynomials. The proposed implementation is tail...

متن کامل

DUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES

The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...

متن کامل

The Contour Integral Method for Loaded Cracks

An extension of the contour integral method (CIM) for the computation of stress intensity factors for loaded cracks is presented. Numerical solutions of the two-dimensional linear elasticity equations are computed with the p-version of the generalized finite element method. Polynomial enrichment functions as well as enrichment with near crack tip asymptotic expansion are used. The robustness of...

متن کامل

Development of the Next-generation Computational Fracture Mechanics Simulator for Constructing Safe and Sustainable Society

The authors have been developing a crack propagation analysis system that can deal with arbitrary shaped cracks in threedimensional solids. The system is consisting of mesh generation software, a large-scale finite element analysis program and a fracture mechanics module. To evaluate the stress intensity factors, a Virtual Crack Closure-Integral Method (VCCM) for the second-order tetrahedral fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015